This mobile depicts a few of the atomic orbitals of hydrogen, more suggestively known as electron clouds, which describe the probability of finding an atom’s electron at some distance from the nucleus (shown as small black beads), which varies in 3D space throughout a spherical volume centered about the nucleus. Their shapes are determined by the unique configurations of their quantum numbers (n,l,m), which describe the electron’s energy level (the principal quantum number n), the orbital’s shape (the azimuthal quantum number l), and the suborbitals available in that energy level (m the magnetic quantum number). From the top, these are the orbitals (3, 2, 0), (3, 1, 0), (4, 2, 0), (2, 1, 0), (4, 3, 0), and, (4, 1, 0).
Like much of my work, this piece evolved out of a creative exercise I assigned myself. In January of this year, I began making simple Mylar hydrogen orbital ornaments by stippling 2D cross-sections of these orbitals with Sharpie onto die-cut Mylar disks, folding the disks in half, and then sewing them into a sphere with precut holes along the folds. While I found these ornaments attractive and loved the way they appear illuminated when viewed in direct sunlight, I wanted to find a more powerful sculptural method using the same materials that would better do these orbitals justice. My solution was to cut Mylar disks of varying radii to be mounted on a rod and separated by spacers and then airbrush the disks using a series of die-cut cardstock airbrush masks in order to build the volumetric gradients from transparent 2D layers. Cutting templates were drafted in Adobe Illustrator, cut using a Silhouette Curio (hobby CNC die-cutting machine), and I used Copic markers in conjunction with the proprietary Copic airbrush attachment and an air compressor to paint them. As each disk was completed, it was mounted on the rod, and the completed orbitals were suspended from a hanger made of Plexiglass.
These are, to my knowledge, the first sculptural models of these orbitals to acknowledge both sides of the wave-particle duality. Like the plastic models made by several science education supply companies, I have color-coded the regions of my orbitals to show what can be thought of as the “crests” and “troughs” of 3D probability waves that pulsate back and forth between the regions they occupy. However, these models give no information about the probability distributions contained within them. As for the particle side of things, Studio Nebula in Japan has illustrated these probability distributions as discrete particles laser etched in acrylic blocks, but they do not differentiate between the positive and negative regions.
This is not my final answer to the problem of how to sculpt these orbitals, and I have a few ideas using different media I wish to investigate in the future. However, I intend to continue developing and refining the sculptural technique I have invented for this particular approach and finding wider applications for it in math and physics.